

Churning Losses Evaluation On A Swashplate Axial Piston Pump Using Moving Particle Approach F. Canestri¹ G. Parma² A. Lucchi¹ M. Galbiati²

People Finding A Better Way®

Dana Snapshot

Founded in 19042018 sales: \$8.1 billion **145** major facilities **33** countries **6** continents ~15,000 customers in **141** countries 25 ~36,000 people technical centers

Business Overview

Markets	Segments	Regions	Technologies	
Light Vehicles	Light Vehicle Driveline Technologies 44%	North America	Drive	Axles, drivesha wheel and track hybrid vehicles
22%	Commercial Vehicle Driveline Technologies	Europe	Motion	Winches, slew hydraulic pump electronic conti
Heavy Vehicles	20%	31 %	Electrodynamic	E-Motors, gene controls and so
21 %	Off-Highway Drive and Motion Technologies 23%	South America	Thermal	Transmission a and electronics and exhaust-ga
Off-Highway	Power Technologies	Asia Pacific	Sealing	Gaskets and se plates, cam cov shields, and fue
53%	14%	%	Digital	Active and pas as a Service in predictive anal

Sales as of Dec. 31, 2018. Consolidated sales only. Churning Losses Evaluation On A Swashplate Axial Piston Pump Using Moving Particle Approach

Products

afts, transmissions, hydraulic drives, drive units for electric and

drives, planetary gearboxes, os, motors and valves, rols

erators, power electronics, oftware

and engine oil cooling, battery cooling, charge air cooling, as and heat recovery

eals, transmission separator vers and oil pan modules, heat el cell plates

sive system controls, Software cluding descriptive and ytics

Off-Highway Extended Product Portfolio

Churning Losses Evaluation On A Swashplate Axial Piston Pump Using Moving Particle Approach

Bevel Helical Gearboxes

Possible Off-Highway Solutions

Road sweeper

Telehandler

Axial Piston Pump

 $\eta_0 \uparrow \longrightarrow$ Vehicle Performance \uparrow

 $\eta_{o} = \eta_{o}(\eta_{V}; \eta_{hm})$

 η_{v} : volumetric efficiency

Friction in lubricating interfaces

Fluid drag

Losses in shaft bearing & seals

Churning losses

High overall efficiency η_{o}

High limit load pressure

[*]: image from "Experimental study on the influence of the rotating cylinder block and pistons on churning losses in axial piston pumps", J.Zhang, Y.Li, B.Xu, M.Pan, F.Lv, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Zheda Road 38, Hangzhou 310027, China

Churning Losses Evaluation On A Swashplate Axial Piston Pump Using Moving Particle Approach

η_{hm} : hydro-mechanical efficiency

[*]: image from "A novel approach to predict the steady state temperature in ports and case of swashplate type axial piston machines", M.Zecchi, A.Mehdizadeh, M.Ivantysynova, Maha Fluid Power Research Center, Pordue University, 1500 Kepner Dr. Lafayette, IN, USA 47905

Churning Losses Evaluation On A Swashplate Axial Piston Pump Using Moving Particle Approach

CFD Meshless – Followed Workflow

CFD Meshless – Data Analysis

Geometry & Physic Parameters*

Parameters	Symbol	Value	Units
Number of pistons	Z	9	-
Piston diameter	d	0.01	m
Pitch circle radius of piston bores	R	0.02	m
Radius of cylinder block	R _c	0.028	m
Length of the piston out of the cylinder block at the outer dead point	I ₀	0.0165	m
Length of the cylinder block	I _c	0.0325	m
Gap between the cylinder block and the housing internal surface	t	0.0145	m

* Data & graphs available from previous literature documentations

CFD Meshless – Model Set Up

Particleworks[®] Parameters

Parameters	Symbol	Value	Units
Particle size	PS	0.60	mm
Auto grid interval	-	On	-
Flow resistance res.	-	0.50	-
Slip factor	SF	From 3 to 5	-
Contact angle	CA	25	deg
	Туре	Explicit	-
Pressure	Mode	Stabilized	-
	Speed of sound	100	m/s
Viscosity	Туре	Explicit	-
Surface tension	Туре	Potential	-
Turbulence	Туре	None	-
Finish time	t	0.25	S
initial dt	Δt	From $1e^{-5}$ to $2.5e^{-6}$	S
Courant number	_	0.2	-

Data from cylinder block simulations¹²

t FOR 0.1 s OF SIMULATION			
n	t	t	
[rpm]	[s]	[h]	
1500	12031.50	3.34	
3000	10452.90	2.90	
6000	20565.80	5.71	
9000	20506.90	5.69	
12000	40735.60	11.31	

From 3 hours to 11 hours of simulation

WORKSTATION SPECS:

- PROCESSOR: Double processor IntelR XeonR E5-2660 v3 (10C, 2,6 GHz, 25 MB, 105 W)
- GRAPHIC: NVIDIA QuadroR M4000 8 GB (4 DP)
- MEMORY: RDIMM DDR4 ECC 256 GB (8 x 32 GB) @ 2.400MHz

1709296

Churning Losses Evaluation On A Swashplate Axial Piston Pump Using Moving Particle Approach

CFD Meshless - Images

CYLINDER BLOCK

CFD Meshless - Video

Churning Losses Evaluation On A Swashplate Axial Piston Pump Using Moving Particle Approach

CYLINDER BLOCK

CFD Meshless – Results Analysis

CFD Meshless – Results Compare

CYLINDER BLOCK

D	PARTICLEWORKS	THEORETICAL
	Р	Р
	[W]	[W]
	11.22	10.48
	45.64	40.84
	273.91	125.66
	813.22	263.89
	1591.08	460.77

	ERROR	ERROR
	MEASURED-	PARTICLEWORKS-
NK3	THEROETICAL	THEORETICAL
	ε	3
	[%]	[%]
	1.06	6.59
	12.46	10.51
	58.20	54.12
	68.57	67.55
	72.22	71.04

CFD Meshless – Results Compare

PISTONS

D	PARTICLEWORKS	THEORETICAL
	Р	Р
	[W]	[W]
	10.21	12.88
	59.06	111.84
	219.91	797.96
	838.81	2893.41
	1357.17	6999.47

IRED- RKS	ERROR MEASURED- THEORETICAL	ERROR PARTICLEWORKS- THEORETICAL
	3	3
	[%]	[%]
	17.17	26.15
	87.62	89.36
	305.10	262.86
	708.96	244.94
	1105.63	415.74

CFD Meshless – Parameters Assumptions

AIM: find a relation between Particleworks[®] particle size (PS) VS characteristic dimensions $\frac{PS_1}{l_1} = k = const$ For similar geometry $PS_2 = k \cdot l_2, l_1 \neq l_2$

*l*₁: *characteristic dimension*

Following the fatigue limit theory:

Churning Losses Evaluation On A Swashplate Axial Piston Pump Using Moving Particle Approach

For similar geometrical family: $PS_1 = k \cdot l_1$ $PS_2 = k \cdot l_2$

CFD Meshless – Dana HD1

CFD Meshless – Sensitivity

Benchmark with HD1 reference value

CFD Meshless – Sensitivity

CFD Meshless – Sensitivity Outcomes

INFLUENCE OF PARAMETERS

PS Variation

100 90

80

70 60 50

> 40 30

10

SF Variation

1. Pressure solver

- *Implicit* ≈ *Explicit*
- → Better fit incompressible fluid models
- 2. Particle size variation
 - Particle size \rightarrow **1** Accuracy & **1** Time
- **3.** Slip factor variation
 - Slip factor \rightarrow Turbulence model switched OFF $\rightarrow \downarrow$ <u>Time</u> & <u>Accuracy (Need Tuning)</u>

4. Turbulence model

Churning Losses Evaluation On A Swashplate Axial Piston Pump Using Moving Particle Approach

_	
Pressure Solver	Turbulence Model

SF Variation PS Variation Pressure Solver Turbulence Model

Conclusions & Next Steps

Conclusions

- \geq New workflow tested in order to evaluate churning losses in axial piston pumps
- > Particleworks[®] aligned with experimental data
- CFD meshless approach can be used to calculate churning losses in an axial piston pumps
- Sensitivity analysis on Particleworks[®] parameters allowed computational time reduction with the same results

Next Steps

Deeper analysis of LES turbulence models

People Finding A Better Way®